Multiple Holomorphs and Hopf-Galois Structures

Timothy Kohl
Boston University

May 24, 2018

Hopf-Galois Theory

An extension K / k is Hopf-Galois if there is a k-Hopf algebra H and a k-algebra homomorphism $\mu: H \rightarrow \operatorname{End}_{k}(K)$ such that

- $\mu(a b)=\sum_{(h)} \mu\left(h_{(1)}(a) \mu\left(h_{(2)}\right)(b)\right.$
- $K^{H}=\{a \in K \mid \mu(h)(a)=\epsilon(h) a \forall h \in H\}=k$
- μ induces $I \otimes \mu: K \# H \stackrel{\cong}{\rightrightarrows} \operatorname{End}_{k}(K)$

Although Hopf-Galois theory was developed to address the failure of ordinary Galois theory for non-separable extensions, a prime example is when K / k is Galois with group G, for then $H=k[G]$ acts to make K / k Hopf-Galois.

Greither and Pareigis [4] detailed the requirements for a separable extension K/k (which may or may not be Galois) to be Hopf-Galois.

What was also observed (which are the cases we will examine here), is that an already Galois extension K / k with $G=G a l(K / k)$ can be Hopf-Galois with respect to other k-Hopf algebras, besides $k[G]$.

Normal or not, the Greither-Pareigis theory enumerates the different possible structures.

Let K / k be a finite Galois extension with $G=G a l(K / k) . G$ acting on itself by left translation yields an embedding

$$
\lambda: G \hookrightarrow B=\operatorname{Perm}(G)
$$

Definition: $N \leq B$ is regular if N acts transitively and fixed point freely on G.

Theorem

[4] The following are equivalent:

- There is a k-Hopf algebra H such that K / k is H-Galois
- There is a regular subgroup $N \leq B$ s.t. $\lambda(G) \leq \operatorname{Norm}_{B}(N)$ where N yields $H=(K[N])^{G}$.

We note that N must necessarily have the same order as G, but need not be isomorphic.

To organize the enumeration of the Hopf-Galois structures, one considers

$$
R(G)=\left\{N \leq B \mid N \text { regular and } \lambda(G) \leq \operatorname{Norm}_{B}(N)\right\}
$$

which are the totality of all N giving rise to $\mathrm{H}-\mathrm{G}$ structures, which we can subdivide into isomorphism classes given that N need not be isomorphic to G, to wit, let

$$
R(G,[M])=\{N \in R(G) \mid N \cong M\}
$$

for each isomorphism class [M] of group of order $|G|$.

Holomorphs and Multiple Holomorphs

From the regular subgroup $\lambda(G) \leq B$ one defines the classical notion of the holomorph $\operatorname{Hol}(G)$ as $\operatorname{Norm}_{B}(\lambda(G))=\rho(G) \operatorname{Aut}(G)$ where $\rho(G)$ is the right regular representation and $\operatorname{Aut}(G)$ is the set of those elements of the normalizer that fix the identity of G which is, of course, isomorphic to the abstract formulation as $G \rtimes \operatorname{Aut}(G)$.

Also, for any other regular subgroup $N \leq B$, the normalizer $\operatorname{Norm}_{B}(N)$ is isomorphic to the holomorph of N as well.

In the formulation of $\operatorname{Norm}_{B}(\lambda(G))$, one has in fact that it equals $\lambda(G) \operatorname{Aut}(G)$ as well, and in fact, that $\operatorname{Norm}_{B}(\lambda(G))=\operatorname{Norm}_{B}(\rho(G))$. For a non-Abelian group $G, \lambda(G)$ and $\rho(G)$ are distinct but have the same normalizers.

This is the prime example of what one considers when formulating the so-called multiple holomorph of G.

For $\lambda(G) \leq B=\operatorname{Perm}(G)$, one can ask for what other regular subgroups $N \leq B$ have the same normalizer, (holomorph) as G, namely $\operatorname{Hol}(N)=\operatorname{Hol}(G)$.

The equality of holomorphs implies that $N \leq \operatorname{Hol}(G)$ already. If we restrict our attention to those N which are isomorphic to G then N is a conjugate of $\lambda(G)$ by regularity.

So for such an N, where $\tau \in B$ is such that $\tau \lambda(G) \tau^{-1}=N$ then

$$
\begin{aligned}
\tau \operatorname{Norm}_{B}(\lambda(G)) \tau^{-1} & =\operatorname{Norm}_{B}\left(\tau \lambda(G) \tau^{-1}\right) \\
& =\operatorname{Norm}_{B}(N) \\
& =\operatorname{Norm}_{B}(\lambda(G))
\end{aligned}
$$

which means $\tau \in \operatorname{Norm}_{B}(\operatorname{Hol}(G))$, and the converse is true as well.

If we define

$$
\mathcal{H}(G)=\{N \leq \operatorname{Hol}(G) \mid N \text { regular, } N \cong G \text { and } \operatorname{Hol}(N)=\operatorname{Hol}(G)\}
$$

then the multiple holmorph is $\operatorname{NHol}(G)=\operatorname{Norm}_{B}(\operatorname{Hol}(G))$ where $\operatorname{Orb}_{N H O I(G)}(\lambda(G))=\mathcal{H}(G)$.

As $\operatorname{Hol}(G) \triangleleft N H o l(G)$ one can look at $T(G)=N H o l(G) / H o l(G)$ which acts regularly on $\mathcal{H}(G)$.

We will see soon the application of $\mathrm{NHol}(G)$ to the enumeration of $R(G,[M])$.

The size of $T(G)$ has been determined for various classes of groups.
For example, Miller in 1908 determined $T(G)$ for G finite abelian. We note that if $G=G_{1} \times G_{2}$ where $\operatorname{gcd}\left(\left|G_{1}\right|,\left|G_{2}\right|\right)=1$ then, of course, $\operatorname{Aut}(G) \cong \operatorname{Aut}\left(G_{1}\right) \times \operatorname{Aut}\left(G_{2}\right)$ but the same holds for $\operatorname{Hol}(G)$ and $\mathrm{NHol}(\mathrm{G})$.
If G is abelian of odd order then $T(G)$ is trivial.
Let $|G|=2^{m}$ for some m.

- $G \cong C_{2^{2+\epsilon}} \times C_{2^{2+\epsilon-\delta}} \times \bar{G}$ for $\epsilon>\delta>0$ and $\exp (\bar{G})<2^{2+\epsilon-\delta}$ implies $T(G) \cong C_{2} \times C_{2}$
- $G \cong C_{2^{2+\epsilon}} \times C_{2^{2+\epsilon-\delta}} \times C_{2^{2+\epsilon-\delta}} \times \bar{G}$ for $\epsilon>\delta>0$ and $\exp (\bar{G}) \leq 2^{2+\epsilon-\delta}$ implies $T(G) \cong C_{2}$
- $G \cong C_{2^{m}}$ for $m \geq 3$ implies $T(G) \cong C_{2}$
- $G \cong C_{4} \times C_{2}$ implies $T(G) \cong C_{2}$
- $G \cong C_{2^{3+\epsilon}} \times C_{2^{3+\epsilon}} \times \bar{G}$ for $\epsilon \geq 0$ and $\exp (\bar{G}) \leq 2^{3+\epsilon}$ implies $T(G) \cong C_{2}$
- otherwise $|T(G)|=1$

More recent examples:

- [2] If G is a non-Abelian simple group then $T(G) \cong \mathbb{Z}_{2}$.
- [5] If $n=2^{e} p_{1}^{f_{1}} p_{2}^{f_{2}} \cdots p_{r}^{f_{r}}$ then

$$
T\left(D_{n}\right) \cong\left\{x \in U_{n} \mid x^{2}=1\right\} \cong \begin{cases}\left(\mathbb{Z}_{2}\right)^{r} & e<=1 \\ \left(\mathbb{Z}_{2}\right)^{r+1} & e=2 \\ \left(\mathbb{Z}_{2}\right)^{r+2} & e \geq 3\end{cases}
$$

where $U_{n}=\left(\mathbb{Z}_{n}\right)^{*}$.

- [1] If G is a centerless perfect group then $T(G) \cong\left(\mathbb{Z}_{2}\right)^{n}$ where n is the number of components in the Remak-Krull-Schmidt decomposition of G as an $\operatorname{Aut}(G)$-group.
- [3] There is a class $2 p$-group G such that $T(G) \cong \operatorname{Hol}\left(C_{p}\right)$.
- [3] There are class $2 p$-groups such that $T(G)$ contains a non-Abelian subgroup of order $(p-1) \cdot p^{\binom{n}{2} \cdot\binom{n+1}{2} \text {. }}$

$R(G,[M])$ as $\mathrm{Hol}(G)$-set

The enumeration of $R(G,[M])$ for different pairings of groups ($G,[M]$) of the same order has been done using a variety of techniques, usually based on structural and order conditions.

We are also going to consider properties of $R(G,[M])$ more broadly, by focusing less on specific classes of groups (mostly) but rather on the condition which defines membership in this set.

The result will be a conjecture (theorem?) which will give a bound on $|R(G,[M])|$ framed in fairly broad terms, not so specifically keyed to particular structural properties.

As the normalizer of a regular subgroup of $N \leq B$ is canonically isomorphic to $\operatorname{Hol}(N) \leq \operatorname{Perm}(N)$, we shall abuse notation slightly and call $\mathrm{Hol}(N)=\operatorname{Norm}_{B}(N)$ for $N \in R(G,[M])$.

As indicated, we will focus on the condition $\lambda(G) \leq H o l(N)$. If $h \in \operatorname{Hol}(G)$ we have

$$
\begin{aligned}
h \lambda(G) h^{-1} & \leq h H o l(N) h^{-1} \\
& \downarrow \\
\lambda(G) & \leq \mathrm{Hol}\left(h N h^{-1}\right)
\end{aligned}
$$

which means that $h N h^{-1} \in R(G,[M])$ as well.
As such $R(G,[M])$ is a $H=\operatorname{Hol}(G)$-set.

Since $\mathrm{Hol}(G)$ can be quite large, a natural question to ask is whether $R(G,[M])$ is a transitive $\mathrm{Hol}(G)$-set?

As it turns out, the answer is No.

Later on, we will consider an 'action' on $R(G,[M])$ which is a bit 'more' transitive.

For a given N for $H=\operatorname{Hol}(G)$, we can compute the isotropy subgroup H_{N}, namely

$$
\begin{aligned}
H_{N} & =\left\{h \in \operatorname{Hol}(G) \mid h N h^{-1}=N\right\} \\
& =\operatorname{Hol}(G) \cap \operatorname{Hol}(N)
\end{aligned}
$$

so, by the Orbit-Stabilizer theorem, the orbit $\operatorname{Orb}_{H}(N)$ of a given N has size

$$
\left[H: H_{N}\right]=\frac{|H o l(G)|}{|H o l(G) \cap H o l(N)|}
$$

We are especially interested in when $\operatorname{Orb}_{H}(N)=\{N\}$, namely when $N \in R(G,[M])_{H}$.

This occurs when $\operatorname{Hol}(G) \cap \operatorname{Hol}(N)=\operatorname{Hol}(G)$ which leads to two different cases.

If $\operatorname{Hol}(G) \leq \operatorname{Hol}(N)$ then clearly $\operatorname{Hol}(G) \cap \operatorname{Hol}(N)=\operatorname{Hol}(G)$.
If $\mathrm{Hol}(N) \leq \operatorname{Hol}(G)$ then we must have that $\operatorname{Hol}(G) \leq \operatorname{Hol}(N)$ as well since otherwise the intersection would be properly smaller than $\mathrm{Hol}(G)$.

As such, if $N_{1}, N_{2}, \ldots, N_{r}$ are the orbit representatives of the non-trivial orbits of H acting on $R(G,[M])$ then

$$
\begin{aligned}
|R(G,[M])| & =\left|R(G,[M])_{H}\right|+\sum_{i=1}^{r}\left|\operatorname{Orb}_{H}\left(N_{i}\right)\right| \\
& =\left|R(G,[M])_{H}\right|+\sum_{i=1}^{r}\left[\operatorname{Hol}(G): \operatorname{Hol}(G) \cap \operatorname{Hol}\left(N_{i}\right)\right]
\end{aligned}
$$

which, if we want to come up with a formulation similar to the class equation, makes one wonder if $\left|R(G,[M])_{H}\right|$ is the cardinality of a particular group, analgous to the role that $Z(G)$ plays in the study of conjugacy classes.
[Note: $R(G,[M])_{H}$ could be empty when $G \neq M$, for example if M has a smaller automorphism group than G.]

If $[M]=[G]$ then there is a natural analog, since then $|\operatorname{Hol}(N)|=|\operatorname{Hol}(G)|$ obviously, so that $\operatorname{Hol}(G) \cap \operatorname{Hol}(N)=\operatorname{Hol}(G)$ implies that $\operatorname{Hol}(G)=\operatorname{Hol}(N)$.

As such N is a conjugate of $\lambda(G)$ by an element of $T(G)$.
Moreover, since for regular subgroups of B, two subgroups are isomorphic if and only if they're conjugate, then if $G \cong N$ such N are exactly determined by this quotient, that is $\left|R(G,[G])_{H}\right|=[\mathrm{NHol}(G): \mathrm{Hol}(G)]=|T(G)|$.

As such, the above equation becomes:

$$
\begin{equation*}
|R(G,[G])|=|T(G)|+\sum_{i=1}^{r}\left[\operatorname{Hol}(G): \operatorname{Hol}(G) \cap \operatorname{Hol}\left(N_{i}\right)\right] \tag{1}
\end{equation*}
$$

where, again, N_{1}, \ldots, N_{r} are the orbit representatives for the non-trivial orbits of $R(G,[G])$ under the action of $\mathrm{Hol}(G)$.

We'll get back to $R(G,[G])$ in a bit.

Action by Aut(G)

Simplification.
Since $\operatorname{Hol}(G)=\rho(G) \operatorname{Aut}(G)=\lambda(G) \operatorname{Aut}(G)=\operatorname{Aut}(G) \lambda(G)$ then if $N \in R(G,[M])$ and $h=\alpha \lambda(g) \in \operatorname{Hol}(G)$ then

$$
\begin{aligned}
h N h^{-1} & =\alpha \lambda(g) N \lambda(g)^{-1} \alpha^{-1} \\
& =\alpha N \alpha^{-1}
\end{aligned}
$$

so that $\operatorname{Orb}_{\text {Hol(G) }}(N)=\operatorname{Orb}_{\operatorname{Aut}(G)}(N)$ and concordantly

$$
[\mathrm{Hol}(G): \operatorname{Hol}(G) \cap \operatorname{Hol}(N)]=[\operatorname{Aut}(G): \operatorname{Aut}(G) \cap \operatorname{Hol}(N)]
$$

for each N.

If we follow the convention that

$$
\operatorname{Aut}(G)=\left\{\pi \in \operatorname{Hol}(G) \mid \pi\left(i_{G}\right)=i_{G}\right\}
$$

then if $N \in R(G,[M])$ then $\operatorname{Hol}(N)=\operatorname{Norm}_{B}(N)=\operatorname{NAut(N)}$ where

$$
\operatorname{Aut}(N) \cong\left\{\pi \in \operatorname{Hol}(N) \mid \pi\left(i_{G}\right)=i_{G}\right\} .
$$

and so $\operatorname{Aut}(G) \cap \operatorname{Hol}(N)=\operatorname{Aut}(G) \cap \operatorname{Aut}(N)$.

If $A=\operatorname{Aut}(G)$ then the orbit formula becomes:

$$
\begin{aligned}
|R(G,[M])| & =\left|R(G,[M])_{A}\right|+\sum_{i=1}^{r}\left|\operatorname{Orb}_{A}\left(N_{i}\right)\right| \\
& =\left|R(G,[M])_{A}\right|+\sum_{i=1}^{r}\left[\operatorname{Aut}(G): \operatorname{Aut}(G) \cap \operatorname{Aut}\left(N_{i}\right)\right]
\end{aligned}
$$

for N_{1}, \ldots, N_{r} the non-trivial orbit representatives, and, again, for $R(G,[G])$ we get

$$
|R(G,[G])|=|T(G)|+\sum_{i=1}^{r}\left[\operatorname{Aut}(G): \operatorname{Aut}(G) \cap \operatorname{Aut}\left(N_{i}\right)\right]
$$

with $T(G)$ is the multiple holomorph as discussed earlier.

The multiple holomorph does not appear only in the ($G,[G]$) case, but more generally.

Recall a frequently quoted fact used in the enumeration of $R(G,[M])$, namely that

$$
N \in R(G,[M]) \text { implies } N^{o p p}=\operatorname{Cent}_{B}(N) \in R(G,[M])
$$

since $\operatorname{Hol}(N)=\operatorname{Hol}\left(N^{o p p}\right)$ which, if $[M]$ is non-Abelian, means that $N \neq N^{\text {opp }}$ and so that $2||R(G,[M])|$.

However, since $N \cong N^{o p p}$ then $N^{o p p}=\tau N \tau^{-1}$ for some $\tau \in B$.
And since $\mathrm{Hol}(N)=\mathrm{Hol}\left(N^{o p p}\right)$ then $\tau \in T(N)$, the multiple holomorph of N.

Indeed, for a non-Abelian group N, one has that $|T(N)| \geq 2$ since it at least contains the element which conjugates N to its opposite.

More generally, for any regular $N \leq B$ one may write $T(N)$ to be the group of those $\tau \in B$ such that $\mathrm{Hol}(N)=\mathrm{Hol}\left(\tau N \tau^{-1}\right)$ and that for each N in a given isomorphism class, all $T(N)$ are isomorphic.

This yields:

Theorem

For each isomorphism class $[M]$ of groups where $|M|=|G|$, one has that $|T(M)|$ divides $|R(G,[M])|$.

This is quite interesting since for a given $N \in R(G,[M])$ where $\alpha \in \operatorname{Aut}(G)$ and $\tau \in T(N)$ one has

where both $\alpha(N)$ and $\tau(N)$ lie in $R(G,[M])$ where $\left|\operatorname{Orb}_{T(N)}(N)\right|=|T(M)|$.

The idea we will explore is this simultaneous action of $\operatorname{Aut}(G)$ and $T(M)$, where all $T(N)$ are isomorphic to $T(M)$ since each $N \in R(G,[M])$.

This is how the action of $T(M)$ must be understood since, for those N in $R(G,[M])$ which have the same holomorph, there is the group $T(N)$ whose orbit is this subset. As such, $R(G,[M])$ is divided into equivalence classes, each of size $|T(M)|$.

What we look to obtain is a bound on $|R(G,[M])|$ arising from these actions by $\operatorname{Aut}(G)$ and $T(M)$.

As observed earlier, the action of $\operatorname{Aut}(G)$ is neither transitive, nor fixed point free, and the action by $T(M)$ is fixed point free, but not transitive.

Conjecture: Is it possible (or when is it the case) that

$$
|R(G,[M])| \leq|T(M)| \cdot|\operatorname{Aut}(G)|
$$

for groups $(G,[M])$ of some order n ?

In the enumeration of $R(G,[M])$ we have that $|T(M)|$ divides

$$
\left|R(G,[M])_{A}\right|+\sum_{i=1}^{r}\left[\operatorname{Aut}(G): \operatorname{Aut}(G) \cap \operatorname{Aut}\left(N_{i}\right)\right]
$$

but it's a slightly delicate question as to how it divides the terms.
And applied to $R(G,[G])$ where

$$
|R(G,[G])|=|T(G)|+\sum_{i=1}^{r}\left[\operatorname{Aut}(G): \operatorname{Aut}(G) \cap \operatorname{Aut}\left(N_{i}\right)\right]
$$

then $|T(G)|$ divides the first term on the right and must therefore divide $\sum_{i=1}^{r}\left[\operatorname{Aut}(G): \operatorname{Aut}(G) \cap \operatorname{Aut}\left(N_{i}\right)\right]$ as well.

Let's first establish this for some well understood classes of examples.
If p, q are prime, where $p>q$ then there are one $[p \not \equiv 1(\bmod q)]$ or two [$p \equiv 1(\bmod q)$] groups of order $p q$ and $R(G,[M])$ was computed by Byott.

$G \backslash M$	$C_{p q}$	$C_{p} \rtimes C_{q}$
$C_{p q}$	1	$2(q-2)$
$C_{p} \rtimes C_{q}$	p	$2(p(q-2)+1)$

Now, $\left|\operatorname{Aut}\left(C_{p q}\right)\right|=\phi(p) \phi(q),\left|\operatorname{Aut}\left(C_{p} \rtimes C_{q}\right)\right|=p(p-1)$, and also $\left|T\left(C_{p q}\right)\right|=1,\left|T\left(C_{p} \rtimes C_{q}\right)\right|=2$ which yields the following parallel table for $|\operatorname{Aut}(G)| \cdot|T(M)|$

$G \backslash M$	$C_{p q}$	$C_{p} \rtimes C_{q}$
$C_{p q}$	$(p-1)(q-1)$	$2(p-1)(q-1)$
$C_{p} \rtimes C_{q}$	$p(p-1)$	$2(p(p-1))$

and it's clear that $|R(G,[M])| \leq|A u t(G)| \cdot|T(M)|$ for each pairing.

Let's look at some empirical evidence, first in degree 6 which we already know works.

```
gap> Read("../RLIB/R6.g");
gap> Read("conjecture.g");
gap> conjecture(6);
[ true, true ] <- |R(G,[M])| <= |Aut(G)|
[ true, true ]
    [ true, true ] <- |R(G,[M])|<= |Aut(G)| x |T(M)|
    [ true, true ]
gap> List([1..Size(G[6])],t->Size(AutG[6][t]));
[ 6, 2 ]
gap> List([1..Size(G[6])],t->Index(NHolG[6][t],HolG[6][t]));
[ 2, 1 ]
gap> aprint(List([1..Size(G[6])],i->List([1..Size(G[6])],j->Size(R[6][i][j]))));
[ 2, 3 ]
[ 2, 1 ]
gap> aprint(List([1..Size(G[6])],i->List([1..Size(G[6])],j->Size(AutG[6][i])*Index(NHolC
[ 12, 6 ]
[4, 2 ]
gap>
```

```
gap> Read("../RLIB/R8.g");
gap> Read("conjecture.g");
gap> conjecture(8);
[ true, true, true, true, true ]
<- |R(G,[M])| <= |Aut(G)|
[ true, false, true, true, true ]
[ true, false, true, true, true ]
[ true, true, true, true, true ]
[ true, true, true, true, true ]
[ true, true, true, true, true ] <- |R(G, [M])|<= |Aut(G)| x |T(M)|
[ true, true, true, true, true ]
gap> List([1..Size(G[8])],t->Size(AutG[8][t]));
[4, 8, 8, 24, 168 ]
gap> List([1..Size(G[8])],t->Index(NHolG[8] [t],HolG[8] [t]));
[ 2, 2, 2, 2, 1 ]
gap> aprint(List([1..Size(G[8])],i->List([1..Size(G[8])],j->Size(R[8][i] [j]))));
[2, 0, 2, 2, 0 ]
[4, 10, 6, 2, 4]
[ 2, 14, 6, 2, 6 ]
[6, 6, 6, 2, 2 ]
[0, 42, 42, 14, 8 ]
gap> aprint(List([1..Size(G[8])],i->List([1..Size(G[8])],j->Size(AutG[8] [i])*Index(NHolG[8] [j],HolG [8] [j]
[ 8, 8, 8, 8, 4 ]
[16, 16, 16, 16, 8 ]
[ 16, 16, 16, 16, 8 ]
[ 48, 48, 48, 48, 24]
[ 336, 336, 336, 336, 168 ]
```

Looking at the orbits with respect to the actions of $\operatorname{Aut}(G)$ and $T(M)$, some interesting patterns can be seen.

```
gap> orbitlist(6);
R(S3,[S3]) i=1 j=1
[ [ 1 ], [ 2 ] ] <- orbits with respect to Aut(G) {\lambda(G) \rho(G)}
[ [ 1, 2 ] ] <- orbits with respect to T(M)
R(S3,[C6]) i=1 j=2
[ [ 1, 3, 2 ] ]
[ [ 1 ], [ 2 ], [ 3 ] ] <- note T(C6) is trivial
R(C6,[S3]) i=2 j=1
[ [ 1 ], [ 2 ] ] <- Hol(G) is contained in Hol(N_i)
[ [1, 2] ]
R(C6,[C6]) i=2 j=2
[ [ 1 ] ]
[ [ 1 ] ]
```

```
gap> orbitlist(8);
R(C8,[C8]) i=1 j=1
[ [ 1 ], [ 2 ] ]
[ [ 1, 2 ] ]
R(C8,[C4 x C2]) i=1 j=2
R(C8,[D8]) i=1 j=3
[ [ 1 ], [ 2 ] ]
[ [ 1, 2 ] ]
R(C8,[Q8]) i=1 j=4
[ [ 1 ], [ 2 ] ]
[ [ 1, 2 ] ]
R(C8,[C2 x C2 x C2]) i=1 j=5
```

```
R(C4 x C2,[C8]) i=2 j=1
[ [ 1, 2, 4, 3 ] ]
[ [ 1, 2], [ 3, 4] ]
R(C4 x C2,[C4 x C2]) i=2 j=2
[ [ 1 ], [ 9, 7 ], [ 10, 8 ], [ 5, 3 ], [ 6, 4 ], [ 2 ] ]
[ [ 1, 2 ], [ 3, 4], [ 5, 6 ], [ 7, 8 ], [ 9, 10 ] ]
R(C4 x C2,[D8]) i=2 j=3
[ [ 1, 6 ], [ 3, 4 ], [ 2, 5 ] ]
[ [ 1, 2 ], [ 3, 4 ], [ 5, 6 ] ]
R(C4 x C2,[Q8]) i=2 j=4
[ [ 1, 2 ] ]
[ [ 1, 2 ] ]
R(C4 x C2,[C2 x C2 x C2]) i=2 j=5
[ [ 1 ], [ 2, 3 ], [ 4 ] ]
[ [ 1 ], [ 2 ], [ 3 ], [ 4 ] ]
```

```
R(D8,[C8]) i=3 j=1
[ [ 1, 2 ] ]
[ [ 1, 2 ] ]
R(D8,[C4 x C2]) i=3 j=2
[ [ 1, 10 ], [ 9, 2 ], [ 11, 13, 4, 6 ], [ 14, 12, 5, 3 ], [ 8, 7 ] ]
[[ 1, 2 ], [ 3, 4], [ 5, 6 ], [ 7, 8 ], [ 9, 10 ], [ 11, 12 ], [ 13, 14
R(D8,[D8]) i=3 j=3
[ [ 1 ], [ 3, 6 ], [ 2 ], [ 4, 5 ] ]
[ [ 1, 2 ], [ 3, 4 ], [ 5, 6 ] ]
R(D8,[Q8]) i=3 j=4
[ [ 1 ], [ 2 ] ]
[[ 1, 2 ] ]
R(D8,[C2 x C2 x C2]) i=3 j=5
[ [ 1, 6 ], [ 2, 3, 4, 5 ] ]
[ [ 1 ], [ 2 ], [ 3 ], [ 4 ], [ 5 ], [ 6 ] ]
```

```
R(Q8,[C8]) i=4 j=1
[ [ 1, 3, 4, 2, 5, 6 ] ]
[ [ 1, 3], [ 2, 4 ], [ 5, 6 ] ]
R(Q8,[C4 x C2]) i=4 j=2
[ [ 1, 3, 5, 6, 4, 2 ] ]
[ [ 1, 2 ], [ 3, 4 ], [ 5, 6 ] ]
R(Q8,[D8]) i=4 j=3
[ [ 1, 5, 4 ], [ 3, 2, 6 ] ]
[ [ 1, 2], [ 3, 4], [ 5, 6 ] ]
R(Q8,[Q8]) i=4 j=4
[ [ 1 ], [ 2 ] ]
[ [ 1, 2 ] ]
R(Q8,[C2 x C2 x C2]) i=4 j=5
[ [ 1, 2 ] ]
[[ 1 ], [ 2 ] ]
```

```
R(C2 x C2 x C2,[C8]) i=5 j=1
R(C2 x C2 x C2,[C4 x C2]) i=5 j=2
[ [ 1, 25, 37, 41, 14, 9, 33, 21, 35, 39, 28, 6, 11, 23, 4, 19, 30, 8, 16, 18, 32 ],
    [ 27, 3, 17, 13, 5, 20, 24, 31, 29, 22, 40, 7, 36, 38, 12, 42, 10, 34, 15, 26, 2 ] ]
[ [ 1, 2 ], [ 3, 8 ], [ 4, 5 ], [ 6, 7 ], [ 9, 10 ], [ 11, 12 ], [ 13, 18 ], [ 14, 15
    [ 21, 22 ], [ 23, 24 ], [ 25, 26 ], [ 27, 32 ], [ 28, 29 ], [ 30, 31 ], [ 33, 34 ],
    [ 39, 40 ], [ 41, 42 ] ]
R(C2 x C2 x C2,[D8]) i=5 j=3
[ [ 1, 2, 25, 33, 26, 32, 9, 10, 21, 15, 30, 22, 14, 29, 7, 28, 40, 12, 42, 6, 27, 39,
    23, 19, 31, 16, 38, 36, 17, 37, 13, 18, 8, 3 ] ]
[ [ 1, 2 ], [ 3, 8 ], [ 4, 5 ], [ 6, 7 ], [ 9, 10 ], [ 11, 12 ], [ 13, 18 ], [ 14, 15
    [ 21, 22 ], [ 23, 24 ], [ 25, 26 ], [ 27, 28 ], [ 29, 30 ], [ 31, 36 ], [ 32, 33 ],
    [ 39, 40 ], [ 41, 42 ] ]
R(C2 x C2 x C2,[Q8]) i=5 j=4
[ [ 1, 2, 13, 14, 9, 10, 11, 12, 7, 6, 4, 5, 3, 8 ] ]
[ [ 1, 2 ], [ 3, 8 ], [ 4, 5 ], [ 6, 7 ], [ 9, 10 ], [ 11, 12 ], [ 13, 14 ] ]
R(C2 x C2 x C2,[C2 x C2 x C2]) i=5 j=5
[ [ 1 ], [ 8, 6, 5, 3, 2, 4, 7 ] ]
[ [ 1 ], [ 2 ], [ 3 ], [ 4 ], [ 5 ], [ 6 ], [ 7 ], [ 8 ] ]
```

There are a few 'motifs' present when looking at the orbits of $A u t(G)$ and $T(M)$.
For example, the orbits can be 'perpendicular', namely that
$\operatorname{Orb}_{\text {Aut }(G)}(N) \cap \operatorname{Orb}_{T(N)}(N)=\{N\}$.
$R(D 8,[D 8]) i=3 j=3$
[[1], [3, 6], [2], [4, 5]]
[[1, 2], [3, 4], [5, 6]]
For N_{1} and N_{2} which are $\lambda(G)$ and $\rho(G)$, one has that $\operatorname{Aut}(G)$ acts trivially, while $T(G)=\langle\tau\rangle \cong C_{2}$ which maps $\lambda(G)$ to $\rho(G)$.

And, $\operatorname{Orb}_{T\left(N_{3}\right)}=\left\{N_{3}, N_{4}\right\}$ and $\operatorname{Orb}_{\operatorname{Aut}(G)}\left(N_{3}\right)=\left\{N_{3}, N_{6}\right\}$ and $\operatorname{Orb}_{T\left(N_{6}\right)}=\left\{N_{6}, N_{5}\right\}$ and $\operatorname{Orb}_{\text {Aut }(G)}\left(N_{4}\right)=\left\{N_{4}, N_{5}\right\}$

A somewhat more interesting example of this occurs in degree 40 with $R\left(C_{5} \rtimes C_{8},\left[C_{5} \rtimes^{\prime} C_{8}\right]\right)$

It is also possible for the orbits with respect to $\operatorname{Aut}(G)$ to be contained in the orbits of T and vice versa, for example:

```
R(C24,[C24]) i=2 j=2
[ [ 1 ], [ 2 ] ]
[ [1, 2] ]
```


or
$R(Q 8,[C 8]) i=4 j=1$
[[1, 3, 4, 2, 5, 6]]
<- Aut-orbit
$[[1,3],[2,4],[5,6]]$
<- T-orbits

which corresponds to a non-trivial intersection of $\operatorname{Aut}(G)$ and $T(N)$.

The containments can be mixed, as with this example in degree 40 with $R\left(C_{5} \rtimes Q_{2},\left[C_{5} \rtimes C_{8}\right]\right)$

3	10	12	25	29	9	11	31	33	35
।	।	।	1	1	।	।	।	।	।
T	T 1	T	T	T	T	T 1	T 1	T	T
I	1	1	1	1	1	,	1	1	1
4	15	13	26	30	16	14	32	34	36
1	1	1	1	1	1	।	1	1	।
T	T 1	T I	T 1	T	T 1	T 1	T 1	T	T
।	,	।	1	1	1	,	,	।	1
7	18	20	27	37	17	19	39	41	43
I	1	1	1	1	1	1	1	1	
T	T	T	T 1	T	T	T	T	T	T
1	1	1	18	1	${ }^{1}$	1	1	1	1
8	23	21	28	38	24	22	40	42	44

where the boxed entries correspond to separate orbits under $\operatorname{Aut}(G)$.
R(C5 : Q8, [C5 : C8]) i=4 $j=1$
[[1, 5] , [2, 6] , $[25,33,35,29,31,27,41,43,37,39,8,20,18,24,22,4,12,10,16,14]$, $[26,34,36,30,32,28,42,44,38,40,7,21,23,17,19,3,13,15,9,11]]$
$[[1,2,5,6],[3,4,7,8],[9,16,17,24],[10,15,18,23],[11,14,19,22],[12,13,20,21]$, $[25,26,27,28],[29,30,37,38],[31,32,39,40],[33,34,41,42],[35,36,43,44]]$

There are also in-between motifs.
R(C4 x S3, [C3 : C8]) i=5 j=1
[[1, 5] , [2, 6], [7, 15, 13, 3, 11, 9], [8, 14, 16, 4, 10, 12]]
[[1, 2, 5, 6], [3, 4, 7, 8], [9, 12, 13, 16], [10, 11, 14, 15]]


```
Going back to low degree examples, the conjecture holds in degree 12.
gap> conjecture(12);
[ true, true, true, true, true ]
[ true, true, true, true, true ]
[ true, true, true, true, true ]
[ false, true, true, false, true ] <- |R(G,[M])| <= |Aut(G)|
[ true, true, true, true, true ]
gap> List([1..Size(G[12])],t->Size(AutG[12][t]));
[ 12, 4, 24, 12, 12 ]
gap> List([1..Size(G[12])],t->Index(NHolG[12][t],HolG[12][t]));
[ 2, 1, 2, 2, 1 ]
gap> aprint(List([1..Size(G[12])],i->List([1..Size(G[12])],j->Size(R[12][i][j]))));
[ 2, 3, 12, 2, 3 ]
[ 2, 1, 0, 2, 1 ]
[0, 0, 10, 0, 4 ]
[ 14, 9, 0, 14, 3 ]
[ 6, 3, 4, 6, 1 ]
gap> aprint(List([1..Size(G[12])],i->List([1..Size(G[12])],j->Size(AutG[12][i])*Index(NHolG[12][j],
[ 24, 12, 24, 24, 12 ]
[ 8, 4, 8, 8, 4 ]
[48, 24, 48, 48, 24 ]
[ 24, 12, 24, 24, 12 ]
[ 24, 12, 24, 24, 12 ]
```

Alas, this conjecture is not true for all classes of groups.

```
gap> Read("../RLIB/R18.g");
gap> Read("conjecture.g");
gap> conjecture(18);
[ true, true, true, true, true ]
[ true, true, true, true, true ]
[ true, true, false, false, true ]
[ true, true, true, true, true ]
[ true, true, true, false, true ]
[ true, true, true, true, true ]
[ true, true, true, true, true ]
gap> aprint(List([1..Size(G[18])],i->List([1..Size(G[18])],j->Size(R[18][i][j]))));
[ 2, 9, 0, 0, 0]
[6, 3, 0, 0, 0 ]
[0, 0, 24, 30, 9 ]
[0,0,72, 62, 9 ]
[ 0, 0, 24, 30, 9 ]
gap> aprint(List([1..Size(G[18])],i->List([1..Size(G[18])],j->Size(AutG[18][i])*Index(NHolG[18] [j
[ 108, 54, 108, 108, 54 ]
[ 12, 6, 12, 12, 6 ]
[ 24, 12, 24, 24, 12 ] <- Note Aut(C3xS3)=12 and T((C3 x C3):C2)=2
[ 864, 432, 864, 864, 432 ]
[ 96, 48, 96, 96, 48 ]
```

but the failure for $R\left(C_{3} \times S_{3},\left[\left(C_{3} \times C_{3}\right) \rtimes C_{2}\right]\right)$ is interesting...

We have that $\left|R\left(C_{3} \times S_{3},\left[\left(C_{3} \times C_{3}\right) \rtimes C_{2}\right]\right)\right|=30$ whereas $\left|A u t\left(C_{3} \times S_{3}\right)\right|=12$ and $\left|T\left(\left(C_{3} x C_{3}\right) \rtimes C_{2}\right)\right|=2$ so that $|R|$ is 'approximately' $|\operatorname{Aut}(G)| \cdot|T(M)|$.
Also, there is a curious interaction of the actions of $\operatorname{Aut}(G)$ and $T(M)$, namely

but also..

namely that $\operatorname{Orb}_{T\left(N_{13}\right)}\left(N_{13}\right)=\operatorname{Orb}_{\text {Aut }(G)}\left(N_{13}\right)$.

Going further, there are cases where the conjecture is true for all $R(G,[M])$ of a given size.

```
gap> Read("../RLIB/R20.g");
gap> Read("conjecture.g");
gap> conjecture(20);
[ true, true, true, true, true ]
[ true, true, true, true, true ]
[ true, true, true, true, true ] <- |R(G, [M])| <= |Aut(G)|
[ true, true, true, true, true ]
gap> List([1..Size(G[20])],t->Size(AutG[20][t]));
[ 40, 8, 20, 40, 24 ]
gap> List([1..Size(G[20])],t->Index(NHolG[20] [t],HolG[20] [t]));
[ 2, 1, 2, 2, 1]
gap> aprint(List([1..Size(G[20])],i->List([1..Size(G[20])],j->Size(R[20][i][j]))));
[ 2, 5, 20, 2, 5 ]
[ 2, 1, 4, 2, 1]
[ 10, 5, 12, 10, 5 ] {20}\{8\}
[ 22, 15, 0, 22, 5 ] {40}
[ 6, 3, 0, 6, 1 ] {24}
```

And others where there are a few $(G,[M])$ where it does not hold.

```
gap> Read("../RLIB/R24.g");
gap> Read("conjecture.g");
gap> needT:=Filtered(Tuples([1..Size(G[24])],2),v->(Size(R[24][v[1]][v[2]])<=
Size(AutG[24][v[1]])*Index(NHolG[24][v[2]],HolG[24][v[2]])) and
(Size(R[24][v[1]][v[2]])>Size(AutG[24][v[1]])));
[ [ 4, 5 ], [ 4, 8 ], [ 5, 4 ], [ 5, 5 ], [ 5, 6 ], [ 5, 7 ], [ 5, 8 ], [ 5, 9 ], [ 5, 14 ],
    [ 6, 8 ], [ 6, 14 ], [ 7, 5 ], [ 7, 8 ], [ 8, 4 ], [ 8, 5 ], [ 8, 6 ], [ 8, 7 ], [ 8, 8 ],
    [ 8, 14 ], [ 9, 5 ], [ 9, 7 ], [ 9, 8 ], [ 10, 5 ], [ 10, 7 ], [ 10, 8 ], [ 10, 14 ], [ 12,
    [ 14, 5 ], [ 14, 6 ], [ 14, 7 ], [ 14, 8 ], [ 14, 14 ] ]
gap> notnhc:=Filtered(Tuples([1..Size(G[24])],2),v->Size(R[24][v[1]][v[2]])>
Size(AutG[24][v[1]])*Index(NHolG[24][v[2]],HolG[24][v[2]]));
[ [ 12, 15 ] ]
gap> Size(G[24])^2;
225
gap>
gap> Read("../RLIB/R36.g");
gap> Read("conjecture.g");
gap> needT:=Filtered(Tuples([1..Size(G[36])],2),v->(Size(R[36][v[1]][v[2]])<=
Size(AutG[36][v[1]])*Index(NHolG[36][v[2]],HolG[36][v[2]])) and
(Size(R[36][v[1]][v[2]])>Size(AutG[36][v[1]])));
[ [ 6, 7 ], [ 6, 11 ], [ 6, 13 ], [ 11, 11 ], [ 12, 6 ], [ 12, 9 ], [ 12, 12 ] ]
gap> notnhc:=Filtered(Tuples([1..Size(G[36])],2),v->Size(R[36][v[1]][v[2]])>
Size(AutG[36][v[1]])*Index(NHolG[36][v[2]],HolG[36][v[2]]));
[[ 10, 6 ],[ 10, 7 ],[ 10, 10 ],[ 10, 12 ],[ 10, 13 ],[ 12, 7 ],[ 12, 8 ],[ 12, 10 ],[ 12, 13
gap> Size(G[36])^2;
196
```

A few more examples to consider.

```
gap> Read("../RLIB/R27.g");
gap> Read("conjecture.g");
gap> needT:=Filtered(Tuples([1..Size(G[27])],2),v-> (Size(R[27][v[1]][v[2]])<=Size(AutG[27][v|
[ [ 4, 4 ] ]
gap> notnhc:=Filtered(Tuples([1..Size(G[27])],2),v->Size(R[27][v[1]][v[2]])>Size(AutG[27][v[1
[ ]
and other 'mp' examples
gap> Read("../RLIB/R28.g");
gap> Read("conjecture.g");
gap> needT:=Filtered(Tuples([1..Size(G[28])],2),v->(Size(R[28][v[1]][v[2]])<=Size(AutG[28][v|
[ ]
gap> notnhc:=Filtered(Tuples([1..Size(G[60])],2),v->Size(R[60][v[1]][v[2]])>Size(AutG[60][v[1
[ ]
gap>
gap> Read("../RLIB/R40.g");
gap> Read("conjecture.g");
gap> needT:=Filtered(Tuples([1..Size(G[40])],2),v->(Size(R[40][v[1]][v[2]])<=Size(AutG[40][v/
[ [ 5, 5 ], [ 5, 7], [ 5, 8 ], [ 8, 5 ], [ 8, 7 ], [ 8, 8 ], [ 12, 4 ], [ 12, 5 ], [ 12, 6 ]
    [ 12, 9 ], [ 12, 12 ], [ 12, 13 ], [ 13, 5 ], [ 13, 8 ] ]
gap> notnhc:=Filtered(Tuples([1..Size(G[40])],2),v->Size(R[40] [v[1]][v[2]])>Size(AutG[40][v[1
[ ]
gap>
```

```
gap> Read("../RLIB/R42.g");
gap> Read("conjecture.g");
gap> needT:=Filtered(Tuples([1..Size(G[42])],2),v->(Size(R[42][v[1]][v[2]])<=Size(
[ ]
gap> notnhc:=Filtered(Tuples([1..Size(G[42])],2),v->Size(R[42][v[1]][v[2]])>Size(A
[ ]
gap>
And one nearly 'mp' case.
gap> Read("../RLIB/R60.g");
gap> Read("conjecture.g");
gap> needT:=Filtered(Tuples([1..Size(G[60])],2),v>>(Size(R[60][v[1]][v[2]])<=Size(
[ [ 8, 8 ], [ 10, 8 ], [ 11, 8 ] ]
gap> notnhc:=Filtered(Tuples([1..Size(G[60])],2),v->Size(R[60][v[1]][v[2]])>Size(A
[ ]
```

Recall that when $n=m p$ for $\operatorname{gcd}(m, p)=1$ where p is prime and does not divide the automorphism group of any group of order m, and where the Sylow p-subgroup is unique, if $N \in R(G,[M])$ then $N \leq \operatorname{Norm}_{B}(\mathcal{P})$ where \mathcal{P} is the Sylow p-subgroup of $\lambda(G)$.

For groups of order 60 these conditions are satisfied for all groups except A_{5}. However $R\left(A_{5},[M]\right)=\varnothing$ unless $M=A_{5}$ and that $R\left(A_{5},\left[A_{5}\right]\right)=\left\{\lambda\left(A_{5}\right), \rho\left(A_{5}\right)\right\}$, and there are only $4[M]$ for which $R\left(A_{5},[M]\right)$ is non-empty.

Thank you!

F．Dalla Volta A．Caranti．
Groups that have the same holomorph as a finite perfect group．
Arxiv preprint GR， 2017.
11
固 N．P．Byott．
Hopf－galois structures on field extensions with simple galois groups．
Bull．London Math．Soc．，36：23－29， 2004.
11
A．Caranti．
The multiple holomorphs of finite p－groups of class two．
Arxiv preprint GR， 2018.
11
围 C．Greither and B．Pareigis．
Hopf Galois theory for separable field extensions．
J．Algebra，106：239－258， 1987.
3， 4
目 T．Kohl．

Multiple holomorphs of dihedral and quaternionic groups.
Comm. Alg., 43:4290-4304, 2015.
11

